

Thermal Monitoring Concepts *Gaining MW from better data*

Harry Sim CEO Cypress Envirosystems

NITSL 2024 Conference

Agenda: Gaining MW from Better Data

- Using non-invasive instrumentation to detect faults and improve MW output
- Recap of enabling technologies:
 - LoRaWAN wireless plant backbone and architecture
 - Wireless Gauge Reader
 - Clamp-on Pipe Wall Temperature Monitor
 - Wireless Liquid Level Monitor
- Use Cases:
 - Condenser Vacuum Pump Fault Detection at PSEG
 - Cycle Isolation Valve Leak Detection at Duke Energy
 - Steam Trap fault detection at Xcel Energy and Vistra
 - Feedwater Heater level control at Constellation Energy
 - Automate thermocouple data collection by operators PSEG

What problem are we solving?

- Optimal plant MW output depends on the proper flow, pressure and temperature parameters.
- Typical faults are valve leaks, stuck actuators, pneumatic miscalibration, leaking instrument air supply etc.
- Faults can reduce generation output, cause unplanned downtime, require expensive overtime work.
- Existing values and gauges are NOT digitized there is no automated monitoring, trending or alarming
- APR models cannot be used for fault detection.

Difficulty of Digitizing Existing Plants

Just to read a simple pressure process value:

- Run wires (power and/or signal)
- I/O panels, termination
- Break seals, leak checks, material compatibility, safety checks
- Engineering assessment, documentation
- Process downtime
- Cybersecurity concerns

Typical traditional solution: INVASIVE AND COSTLY

Need for Non-Invasive Digitization Solution

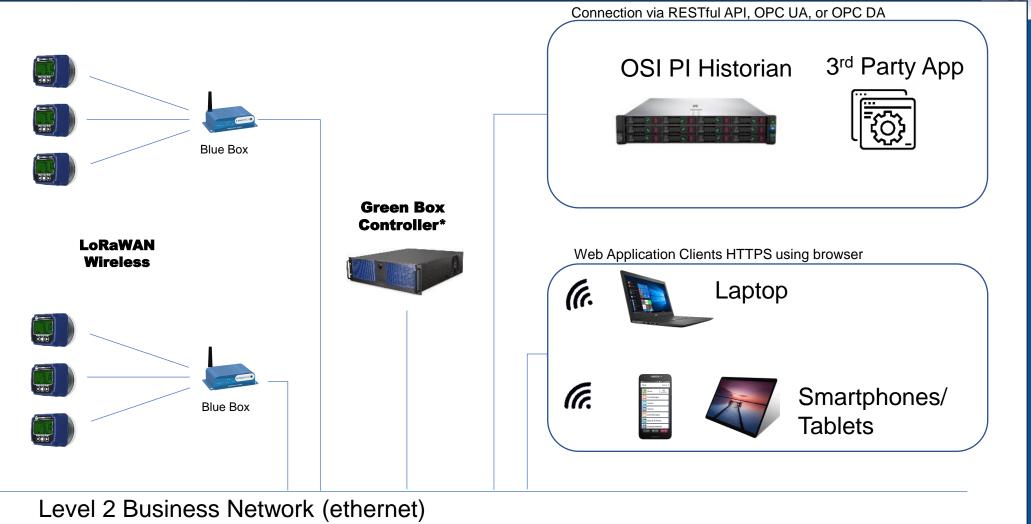
EXPERTSE

Non-Invasive Sensors:

- No breaking seals, no leak checks, no wetted parts
- Lightweight, no structural impact
- No power wires, no signal wires
- Little/no engineering review/analysis
- Takes minutes to install, no plant downtime required
- No new software to install, works with existing plant infrastructure

Enabling Technology: Non-Invasive, Clamp on Wireless Sensors

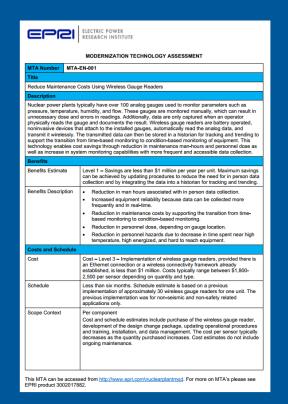
Wireless Gauge Reader



Wireless Steam Trap Monitor

Wireless Pipe Temperature Monitor

LoRaWAN Wireless Backbone



INFICT SIL

Current Deployments

- Duke Energy (Fleetwide: Oconee, Robinson, Brunswick, Harris, Catawba, McGuire)
- Constellation Energy (Calvert, Braidwood, Clinton, JAF, Nine Mile Point, Limerick, Ginna, Peach Bottom)
- Southern (Fleetwide: Farley, Hatch, Vogtle)
- Xcel Energy (Fleetwide: Prairie Island, Monticello)
- NextEra (Fleetwide: Turkey Point, St. Lucie, Point Beach, Seabrook)
- Vistra Luminant (Comanche Peak, Davis Besse)
- STP Nuclear (South Texas)
- Nebraska Public Power District (Cooper)
- PSEG (Fleetwide: Salem, Hope Creek)*
- Bruce Power (Canada)
- Arizona Public Service (Palo Verde*)
- Entergy Vermont Yankee (1 unit decommissioned)
- EPRI Charlotte Nuclear Applications Center (installed)
- France EDF (pilot deployment)

* Pending Installation

EPRI

Plant

Toolkit

Modernization

Condensate Vacuum Pump Fault Detection PSEG Salem

Thermal Performance: PSEG Salem

- Monitor condensate vacuum pumps and valves pressures, temperatures, valve position
- Undetected faults can cause >2 MW thermal performance impact
- Trending of data enables early fault detection

 data sent to GE Smart Signal
- Improves operator efficiency reduces need for manual readings.
- Reduces maintenance cost condition based maintenance

Use of Wireless Gauge Readers to confirm valve transfer function

Read Temperature, Pressure

Valve Cycle Isolation Duke Energy Fleetwide

Valve Cycle Isolation

Cycle Isolation: Monitoring for Better Usage

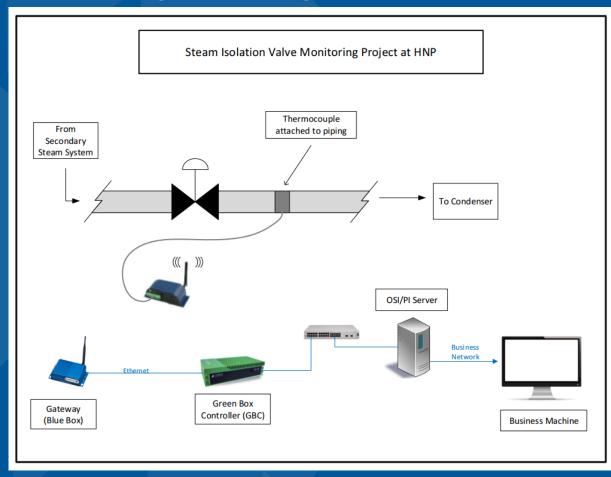
By Greg C. Alder | Published in Valve Magazine

One of the largest controllable losses in power plants is leakage-based energy loss. These losses, which have been documented at more than 400 British Thermal Units per kilowatt hours (Btu/kWh) in some cases, are often overlooked because of the difficulty in spotting them in systems that have hundreds of potentially leaking valves.

CYCLE ISOLATION AND ITS BENEFITS

Cycle isolation is the process of recapturing lost power by monitoring valve system flows for potential leakages through downstream temperature information. It is used in all types of power plants.

These temperatures can be collected manually from plant walk-downs or from real time data when available. The data collected is then used to generate leakage data and alerts. By monitoring the flows within a cycle (called internal isolation) and accounting for all flows entering and leaving a cycle (called external isolation), cycle isolation technology assures that all steam and water flows are going to their proper destinations, maximizing efficiency and minimizing energy losses from leaks.


Monitoring Steam Cycle Isolation (Shut off valves)

- Objective: Detect unintended leakage when valve is fully shut
- Rationale: Leaks can seriously degrade plant thermal performance
- Method: Monitor pipe temperature
- downstream of valve hot = leak
- Current Practice: Manual examination (via IR gun) of temperature taps every three months.
- Proposed Practice: Automate regular temperature data – trends will identify faults before they impact plant performance

Clamp-on pipe wall temperature monitors

Detect Leaking Valves Using Temperature Sensors – Duke Energy

EXPECTSE

Duke Energy Fleetwide - ~400 valves

PSEG Hope Creek – 147 valves Salem - ~40 valves

Vistra Luminant Comanche Peak – 227 valves and steam traps

Xcel Energy Monticello – ~80 valves Prairie Island - ~120 valves

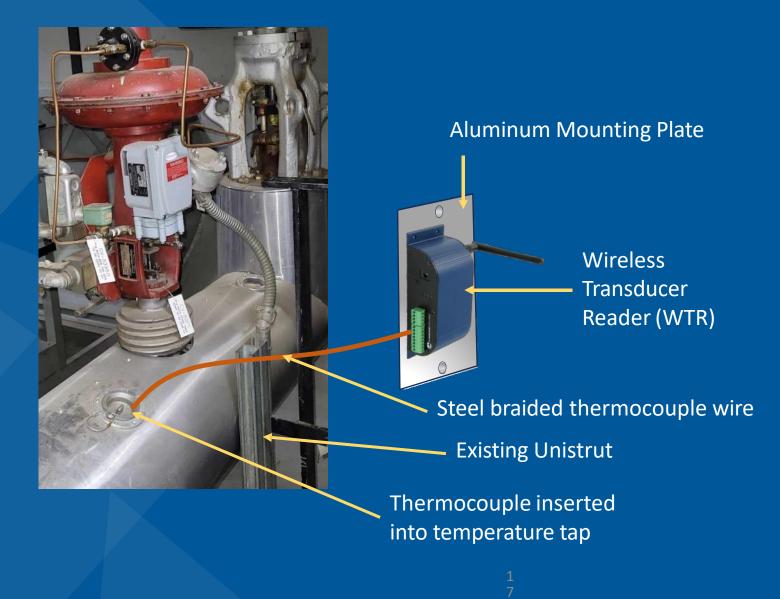
Steam Valve - Details

Shutoff valve

Upstream Temperature Tap

Insulated Pipe

Downstream Temperature Tap


Temperature Tap with rubber cap removed

Temperature Tap interior, with access to pipe wall and pipe insulation

Cypress Wireless Transducer Reader (WTR)

WTR Mounting on Unistrut

Unistruts with Channel Nuts

Thermocouple Insertion to Temperature Tap

Thermocouple wire

— Thermocouple with protective sheath

Cable strain relief, attached using existing screw.

Thermocouple inserted between pipe wall and insulation

Cut notch on rubber cap to allow thermocouple wire to pass through

Steam Trap Fault Detection Xcel Energy, Vistra

Steam Traps - Overview

- Mechanical devices used to separate condensate (liquid part) from dry steam
- No sensor, no communication
- Common failure mode: leak dry steam along with condensate.
- Alternate failure mode: blocked, causing water hammer and potential plant damage.

Wireless Steam Trap Monitoring

- Wireless, battery-operated steam trap monitoring system from Cypress Envirosystems.
- Leverage existing wireless infrastructure of Blue Box Gateways and Green Box Controllers already approved and installed at Monticello.
- Monitor steam trap inlet and outlet temperatures using clamp-on thermocouples.
- Obtain temperature sample every four hours battery life of at least five years.
- Transmit temperatures to OSI PI Historian for fault detection and analysis.
- Use temperature data to detect steam trap faults leak, blocked, flooded etc.
- May use hand-held acoustic analyzer to independently confirm steam trap fault.

Fault Detection for Steam Traps

• Fault detection rules configured and stored in Green Box Controller

Background – Rationale for Steam Trap Monitoring

- Use a heating boiler to generate steam for HVAC heating needs.
- The boiler is fired by Fuel Oil #2.
- The steam is distributed to various plant locations where space heating is required.
- Steam traps are installed throughout the steam network to drain condensate.
- The steam traps have a typical failure rate of about 10% per year they leak steam when they fail undetected leaks can cost thousands of dollars per year.
- In the past, manual steam trap audit were performed to identify and replace faulty traps.
 The last audit was done more than four years ago.
- Objective of this proposal:

Install automated wireless steam trap monitoring system to detect and correct faults in a timely manner - reduce fuel oil consumption and cost.

Existing HVAC Heating System - Summary

Heating system (Boiler)

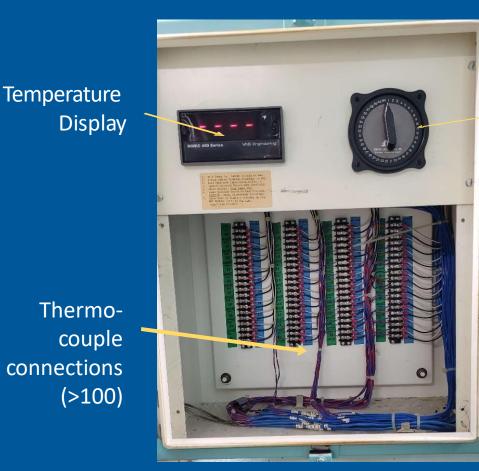
Fuel Type Fuel consumption Fuel Cost per gallon Estimated boiler efficiency Estimated cost of steam

Fuel Oil #2 \$884,000 per year \$4.00 85% \$30 per 1,000 lbs

Steam Trap Population

Number of steam traps	245 units
Steam pressure	50 psi
Trap type	Inverted bucket mechanical
Average trap failure rate	10% per year (per manufacturer)
Time since last trap survey	4+ years

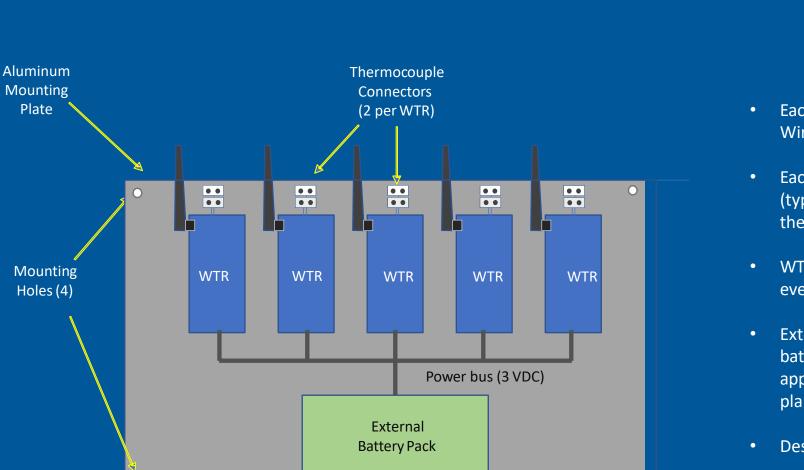
Cash Flow Projection


	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Cost to install monitoring	612,500	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000
Cost to replace faulty traps	22,050	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700	14,700
Fuel Oil savings	-294,081	-294,081	-294,081	-294,081	-294,081	-294,081	-294,081	-294,081	-294,081	-294,081
Manual audit savings	-10,000	-10,000	-10,000	-10,000	-10,000	-10,000	-10,000	-10,000	-10,000	-10,000
Net Cash Flow	330,469	-277,381	-277,381	-277,381	-277,381	-277,381	-277,381	-277,381	-277,381	-277,381
Cumulative Cash Flow	330,469	53,088	-224,293	-501,674	-779,055	-1,056,436	-1,333,817	-1,611,198	-1,888,579	-2,165,960
Payback period NPV @12% IRR	2.2 Years \$1,532,797 84%									

Automate Thermocouple Data Collection PSEG Hope Creek, Xcel Energy

Manual Thermocouple Monitoring – Typical

Thermocouple Selector Panel for Manual Readings Thermocouple Selector dial


Thermocouple Connectors for Manual Readings

Handheld Thermocouple Reader

0

Thermocouple Monitoring Panel – up to 10 TC input

- IN INTERIOR
- Each Module can accommodate one to five Wireless Transducer Readers (WTR's)
- Each WTR can accept up to two thermocouple (type J) inputs – will accept existing thermocouple connectors to plug in to Module
- WTR's will collect sample from thermocouples every 60 minutes.
- External battery pack accommodates 24 Li-On battery cells, type CR123A. Design already approved and used in Constellation nuclear plant (Calvert Cliffs).
- Design battery life: >3 years
- Changing full set of batteries will take about two minutes

Further Use Cases Documented in WGR Users Group Library

Non-Invasive Digitization Use Case Library

otform Tables 👻	Generation Share Case Library - Non-Invasive Nuclear Plant Digitization → Share Help All changes saved at 9:44 AM C							
Case Library - Non-Invasive Nuclear Plant Digitization 🕴 🕇 Add Tab								
ch Filter 🔻							Oclumns ∨ Form ∨	
Title of Use Case	Utility ~	Plant	• T ~	Depart v	Plant Location	Plant System or Sub-System ~	What improvements/benefits come from the data?	
Enable condition Based Maintenance for condensate polisher filters	Constellation	Clinton	BWR	Maintenance	Turbine Building	Condensate Polishing System	Operator Efficiency ALARA reducing dosage exposure Maintenanc	
Fault detection for Air Operated Valves for Feedwater Heaters	Constellation	Calvert Cliffs	PWR	Engineering	Turbine Building	Feedwater Tanks Air Operated Val	Operator Efficiency Fault Detection Maintenance Effort/Consumat	
Fault Detection for Stator Cooling Water Control Valves	Southern Company	Hatch	BWR	Operations	Turbine Building	Generator Stator	Operator Efficiency Fault Detection Maintenance Effort/Consumat	
Improve efficiency of Operator rounds	Duke Energy	Oconee	PWR	Operations	Multiple		Operator Efficiency ALARA reducing dosage exposure	
Fault Detection for Reactor Recirculation Pump Seals	Duke Energy	Brunswick	BWR	Engineering	Reactor Building	Reactor cooling	Fault Detection	
DRAFT - Enhance operator efficiency for thermal performance monitori	PSEG	Hope Creek	BWR	Operations	Turbine Building	Feedwater Heaters	Operator Efficiency Fault Detection	
Fault Detection for Transformers	Constellation	Calvert Cliffs	PWR	Engineering	Other	Transformers	Operator Efficiency Fault Detection	
Ensure personnel safety - Temperature and Humidity Monitoring	Constellation	Calvert Cliffs	PWR	Operations	Turbine Building	Work and storage environment	Operator Efficiency Safety (e.g. Heat Stress, Confined Space etc.)	
Improve groundwater management monitoring	Duke Energy	Brunswick	BWR	Chemistry	Other	Sump Pumps	Operator Efficiency Fault Detection Compliance (e.g. Environmenta	
Implement Condition Based Maintenance of Condensate Polisher Demin	Energy Harbor	Davis Besse	PWR	Chemistry	Turbine Building	Condensate Polishing System	Operator Efficiency Maintenance Effort/Consumables	
Enhance Operator Efficiency for Monitoring Intake Screen	Constellation	Nine Mile Pt	BWR	Operations	Intake	Intake screens	Operator Efficiency	
Improve personnel safety for negative pressure compliance monitoring	Constellation	Nine Mile Pt	BWR	Other	Multiple	Negative pressure locations	Operator Efficiency Safety (e.g. Heat Stress, Confined Space etc.)	
DRAFT - Condition based monitoring of lube oil filters	Constellation	Nine Mile Pt	BWR	Engineering	Turbine Building	Lubricating oil system	Fault Detection	
Fault Detection - cycle Isolation Valve Temperature Monitoring	Duke Energy	Harris	PWR	Engineering	Turbine Building	Cycle isolation valves	Thermal Performance Improves efficiency of the Thermal Performance	
Feedwater Heater Temperature Monitoring	Duke Energy	Robinson	PWR	Engineering	Turbine Building	Heater Drain	Troubleshooting/Emergent Issues	
DRAFT - Fault detection for condensate vacuum pumps and valves	PSEG	Salem	PWR	Engineering	Turbine Building	Condensate pumps and valves	Operator Efficiency Fault Detection Maintenance Effort/Consumat	
DRAFT - Fault detection & troubleshooting for containment moisture re	Bruce Power	Bruce A	CAND	Engineering	Other	Dryer system for containment moi	Operator Efficiency Fault Detection Maintenance Effort/Consumat	
DRAFT - Safety Surveillance Monitoring remote monitoring	Luminant	Comanche Peak	PWR	Operations	Multiple	Safety related systems	Operator Efficiency Fault Detection	

Summary – Thermal Performance Monitoring

- Non-Invasive technologies can digitize legacy instrumentation with minimal cost and disruption
- Data captured can improve plant thermal performance
- Payback period can be very short typically under one year
- Additional benefits: Operator effectiveness, reduced maintenance labor
- Extensive Operational Experience library of Use Cases, Specifications, and Best Practices available from existing users.

Harry Sim CEO, Cypress Envirosystems Email: harry.sim@cypressenvirosystems.com Phone: (408) 307-0922 Web: www.CypressEnvirosystems.com