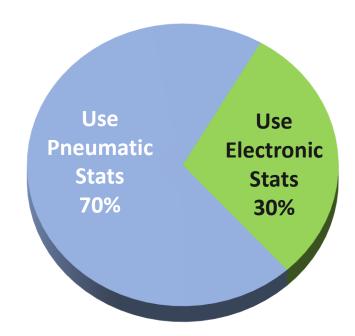
Non-Invasive retrofit from pneumatic to DDC

for 2025 Florida Healthcare Engineering Association Educational Conference

Harry Sim, Cypress Envirosystems
Bob Cox, LP3 Solutions

The Challenge with Pneumatic Thermostats

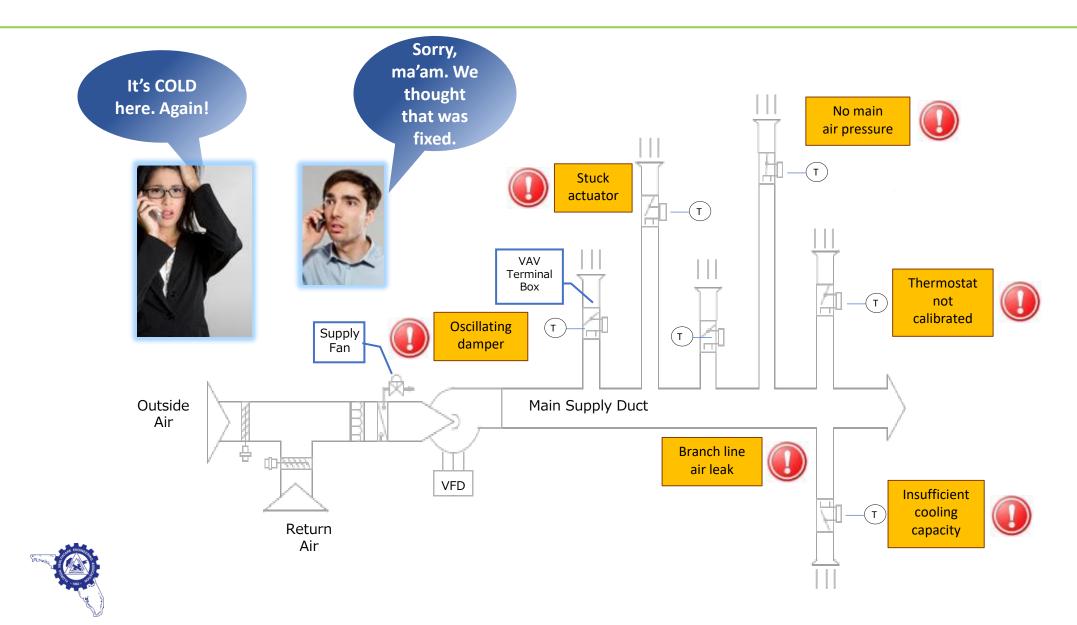
Recognize these thermostats?



- Have been working for the past 100 years...
- Waiting to replace them with DDC
- Some converted already
- Still waiting for budget
- Still waiting for project window


Pneumatics are Still Widely Used

Estimated 70% of hospitals still use pneumatic thermostats


Why so many pneumatics still?

- Buildings constructed before 1999
- Conventional DDC retrofit too disruptive to occupants
- Requires opening up walls & ceilings, replacing actuators, running wires
- Very expensive, >\$3000 per terminal unit
- Long payback period, typically 10 years or more

Pneumatic Shortcomings – No Visibility

Pneumatic Shortcomings – Uses 20-30% More Energy

No remote control
No programmability

** Separate Heating and Cooling Setpoints

** Programmable Occupancy Schedules

** Auto Demand Response (zone level)

** Duct Static Pressure Control

** No/Limited zone sensor data

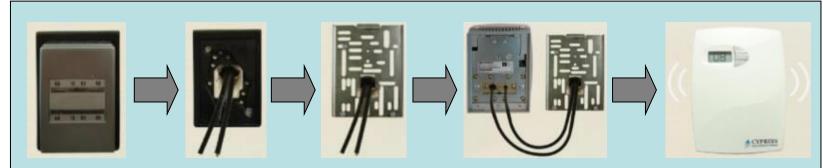
** Optimal Start/Stop

Pneumatic Controlled Buildings Uses 20-30% More Energy Than DDC Controlled Energy Savings Strategies We Take For Granted in New Buildings are NOT POSSIBLE

Non-Invasive, 10 minute Pneumatic to DDC Retrofit

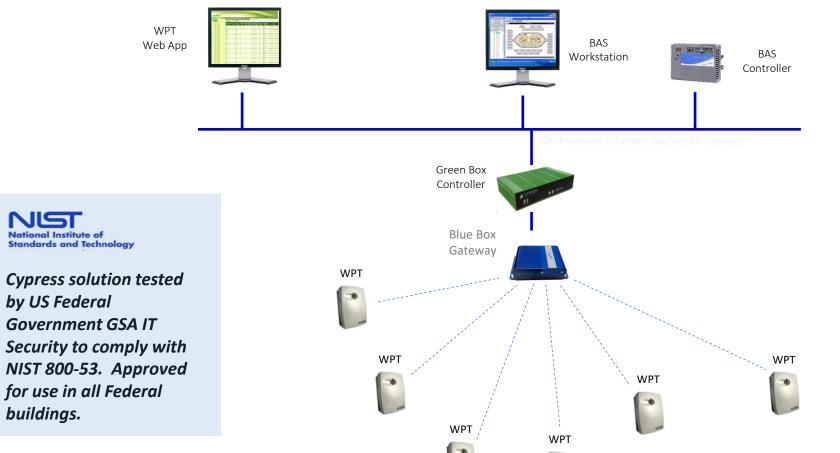
EXISTING LEGACY STAT

Minimal Disruption 10 Minute Upgrade

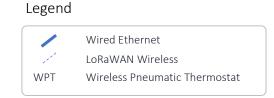


WIRELESS PNEUMATIC THERMOSTAT

- Manual control, non-communicating
- No fault detection, no energy savings strategies
- Manual Calibration Required


- Remote Monitoring, Alarming, Control
- BACnet Integration with 3rd party BAS
- Automatic Self-calibration
- Programmable energy savings, demand response
- Optional Relative humidity monitoring

The Wireless Pneumatic Thermostat Provides (WPT) DDC Zone Control without Disruption



WPT System Components and Architecture

WPT Wireless Network can also accommodate:

- **Occupancy Sensors**
- **Discharge Air Temperature Sensors**
- Airflow CFM Sensors

NIST

buildings.

How Does it Work (for Engineer Audience)

This part is just old-style pneumatic stat.
Works same way as before

How Does it Work (for Engineer Audience)

This part is the "smart robot"

- Motor to change setpoint
- Thermistor
- MEMS Pressure Sensor
- Micro-controller
- Wireless Antenna

If robot stops working, you are back to the original pneumatic stat function

Technology Vetted by U.S. DOE GSA Proving Ground

"Our wireless pneumatic thermostats are easy to use and cost-effective, and they provide access to energy-saving control strategies that weren't available through our old pneumatic system."

—Greg Dix
 Building Manager, Ronald Reagan Building
 Washington, D.C.
 National Capital Region
 U.S. General Services Administration

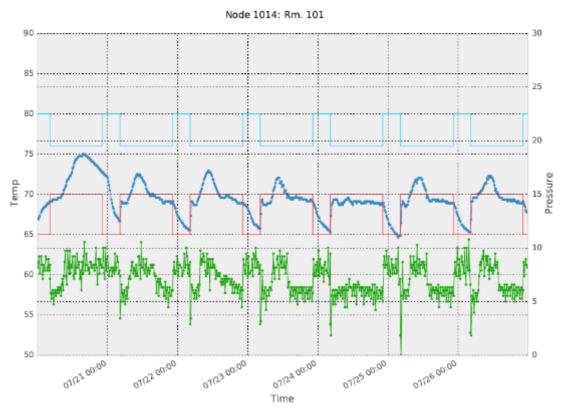
Finalist – 2016 Federal Energy Management Program JUMP Award

Link to GSA/DOE Report:

https://www.gsa.gov/governmentwide-initiatives/climate-action-and-sustainability/emerging-building-technologies/published-findings/energy-management/wireless-thermostats-for-

WPT Technology Already Installed at Healthcare Facilities

- Lifepoint Health System (14 sites in 2025 and 2026)
- Baylor St. Luke's Medical Center Texas Medical Center
- New York City Health and Human Services (3 sites)
- Sutter Health (6 sites)
- Advocate Health (3 sites)
- Aurora St. Luke's Medical Center, Milwaukee
- VA Medical Centers (12 sites)
- Ascension Health
- Etobicoke, Trillium Toronto

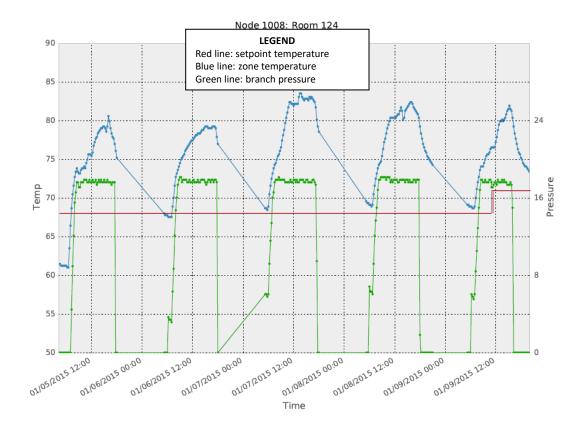

Benefits of Retrofit

- Improve Visibility and Fault Detection
- Reduce Hot/Cold Calls
- Energy Savings

Visibility: Enables Trending of Key Pneumatic Parameters

- Monitor, Trend, Alarm, Notify on Zone Temperatures, Setpoint Temperature(s), Branch Pressure, and Relative Humidity.
- BACNet Integration control and view via BAS, or directly via GBC Controller.
- Know who is uncomfortable before they complain.

Green Line = Branch Pressure


Dark Blue Line = Room Temperature

Light Blue Line = Cooling Setpoint

Red Line = Heating Setpoint

Example of Fault Detection: Zone Temperature Always Hotter than Setpoint

- Hot water valve for reheat was broken and stuck open.
- Terminal unit was always in maximum heat, even though thermostat commanded maximum cooling for that zone.
- Corrective Action:
 Repair/replace faulty valve actuator.

Al Fault Detection for Pneumatics

Wireless Pneumatic Thermostat collects extensive sensor and operational data on zone temperatures, setpoints, occupancy modes, air pressure etc.

'ime	NodeID	Node Nan Type				e Occupano Hop-1	Hop-2	Hop-3				p-6	RSSI-1	RSSI-2	RSSI-3	RSSI-4	RSSI-5	RSSI-6
11/27/2015 0:04	10	1 Barnes Co Conv	62	69.8	18.95 OK	Occupied		14	13	12	11		1 5.3			3 2		
11/27/2015 0:19		1 Barnes Co Conv	62	69.8	18.68 OK	Occupied		14	13	12	11		1 5.4			3 1.8		
11/27/2015 0:34	10	1 Barnes Co Conv	62	69.8	18.42 OK	Occupied		14	13	12	11		1 5.4			3 2		
11/27/2015 0:49		1 Barnes Co Conv	62	69.8	18.68 OK	Occupied		14	13	12	11		1 5.4			3 2.		
11/27/2015 1:04		1 Barnes Co Conv	62	69.8	18.68 OK	Occupied		14	13	12	11		1 5.4				2 3.3	
11/27/2015 1:19		1 Barnes Co Conv	62	69.58	18.68 OK	Occupied		14	13	12	11		1 5.4			3 2		
11/27/2015 1:34	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied		14	13	12	11		1 5.4			3 2		
11/27/2015 1:49	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	3	2 :	3.67
11/27/2015 2:04	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	2 1.8	6 3	3.67
11/27/2015 2:19	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4				2 :	3 4
11/27/2015 2:34	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	2 2.	5 3	3.67
11/27/2015 2:49	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.3	38 5.2	1 2.	5	2 3.3	3 4
11/27/2015 3:04	10	1 Barnes Co Conv	62	69.58	18.16 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.			3.67
11/27/2015 3:19	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	3 2.	5 3	3.67
11/27/2015 3:34	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2			2 :	3.67
11/27/2015 3:49	10	1 Barnes Co Conv	62	69.58	18.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 3.3	3 2	5 3	3.67
11/27/2015 4:04	10	1 Barnes Co Conv	62	69.58	18.42 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 3.6	7 2.	5 3.3	3 4
11/27/2015 4:19	10	1 Barnes Co Conv	70	69.8	4.21 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5	2 :	3.67
11/27/2015 4:34	10	1 Barnes Co Conv	70	70.03	3.95 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	5	3 1.8	6 3	3.67
11/27/2015 4:49	10	1 Barnes Co Conv	70	70.7	5 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5	2 3.3	3.67
11/27/2015 5:04	10	1 Barnes Co Conv	70	70.7	5.53 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2			2 :	
11/27/2015 5:19	10	1 Barnes Co Conv	70	70.93	5.79 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5	2 2.5	3.67
11/27/2015 5:34	10	1 Barnes Co Conv	70	71.15	6.32 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	5 2.	5 1.8	6 3	3 4
11/27/2015 5:49	10	1 Barnes Co Conv	70	71.15	6.58 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	3	2 :	3 4
11/27/2015 6:04	10	1 Barnes Co Conv	70	71.38	6.58 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5	2 :	3 4
11/27/2015 6:19	10	1 Barnes Co Conv	70	71.38	6.84 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2		3 2.	5 3	3.67
11/27/2015 6:34	10	1 Barnes Co Conv	70	71.6	6.84 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2			2 :	3.67
11/27/2015 6:49	10	1 Barnes Co Conv	70	71.6	7.11 OK	Occupied		14	13	12	11		1 5.4				2 3.3	
11/27/2015 7:04		1 Barnes Co Conv	70	71.6	7.11 OK	Occupied		14	13	12	11		1 5.4				2 :	
11/27/2015 7:19	10	1 Barnes Co Conv	70	71.6	7.11 OK	Occupied		14	13	12	11		1 5.4				2 :	
11/27/2015 7:34	10	1 Barnes Co Conv	70	71.83	7.37 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5	2 3.3	3.67
11/27/2015 7:49	10	1 Barnes Co Conv	70	71.83	7.37 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5 1.7	1 2.5	5 4
11/27/2015 8:04	10	1 Barnes Co Conv	70	72.05	7.63 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1 2.	5 2.	5 3.3	3.67
11/27/2015 8:19		1 Barnes Co Conv	70	72.05	7.89 OK	Occupied		14	13	12	11		1 5.4				2	
11/27/2015 8:34	10	1 Barnes Co Conv	70	72.05	7.89 OK	Occupied		14	13	12	11		1 5.3				2 3.3	
11/27/2015 8:49	10	1 Barnes Co Conv	70	71.83	8.42 OK	Occupied		14	13	12	11		1 5.4				2 3.3	
11/27/2015 9:04	10	1 Barnes Co Conv	70	71.6	8.68 OK	Occupied	15	14	13	12	11		1 5.4	12 5.2	1	3	2 :	3.67

Adjust Setpoint(s) to More "Reasonable" Temperature

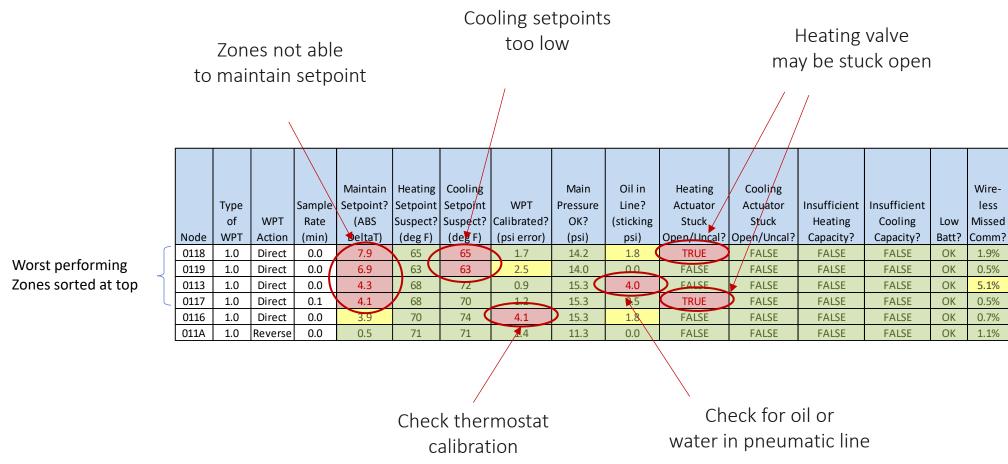
<u>NodeID</u>	Description	Recommended Action	
118	O'Brien Rm 25	Cool Above Setpoint is too low (63F).	Try adjusting
119	O'Brien Rm 27	Cool Above Setpoint is too low (63F).	Try adjusting

Check for Oil in Pneumatic Lines

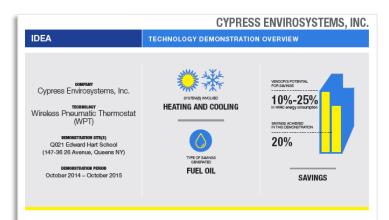
<u>NodeID</u>	<u>Description</u>	Recommended Action
113	O'Brien Rm23	May need to clean system, install new filter/dryers, replace WPT.

Actuators May be Stuck

<u>NodeID</u>	<u>Description</u>	Recommended Action
118	O'Brien Rm 25	Check Heating Actuator - may be stuck open
117	O'Brien Rm 30	Check Heating Actuator - may be stuck open


Check Thermostat Calibration

<u>NodeID</u>	Description	Recommended Action
116	O'Brien Rm 28	Check thermostat calibration - 4.1 deg F offset


Advanced patented analytics software perform fault detection diagnostics and produces easy to read actionable report.

See the big picture and drill down on problems

NYC Case Study - M&V Validated 20% Savings

Technology Description

The Cypress Envirosystems Wireless Pneumatic Thermostat (WPT) retrofits an existing pneumatic thermostat to provide Direct Digital Control (DDC)-like zone control functionality at a fraction of the time and cost compared to a conventional DDC upgrade, without disturbing occupants. The WPT enables remote monitoring of zone temperature and branch pressure, remote control set points, and programmable setback or setup of the pneumatic HVAC systems. This functionality gives operators the ability to detect and diagnose faults that may cause energy waste or discomfort to occupants. It also enables integration with utility Demand Response programs.

Optimum Facility

- Central heating and cooling systems with or without BMS
- Uneven temperature distribution among spaces
- · Existing pneumatic thermostats
- · Stable internet connection

emonstration Resu

After retrofitting 69 of the school's thermostats and actively engaging with the technology, a savings of 20% in oil consumption was recorded. In 17 zones the WPT detected likely equipment faults, which were causing improper temperature control issues and energy waste. Building operators were then able to complete the repairs, which contributed to the recorded savings of 20%. Since oil is used in this facility for space heating, savings were calculated using only the months in the heating season. During the demonstration the boilers were repaired and the insulation was removed and not replaced until after the completion of the

demonstration. As a consequence, oil consumption savings could have been higher and additional savings beyond the 20% could have been expected.

Recommendations for Implementation

- The WPT system can be integrated with existing Building Automation Systems through BACnet/IP
- Internet connection with the Cypress Greenbox needs to be verified for optimum operation of the trend logs and wireless communication with users and/or BMS.
- Fuel consumption data from utility bills, or monthly tank dipping in the case of oil, can be analyzed to determine baseline energy usage.

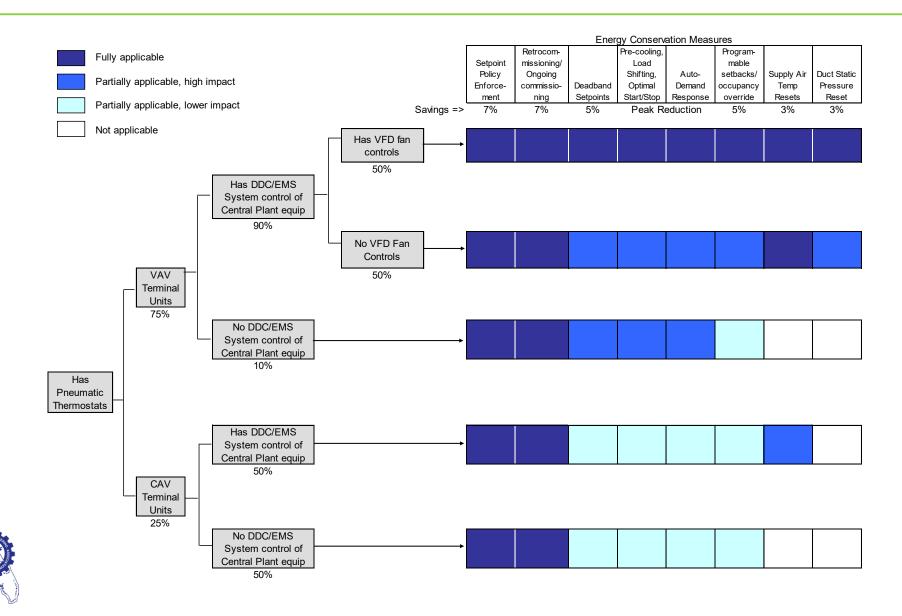
- Edward Hart Middle school Queens, NYC
- Uses Oil Fired Boilers, hot water radiators
- Fault detection, example:
 - Radiator hot water valve stuck open
 - Undetected probably many years
 - Occupants open window to compensate
 - Maintenance staff stretched thin, no data, not aware of situation

Reduced Hot/Cold Calls – 345 California St, San Francisco

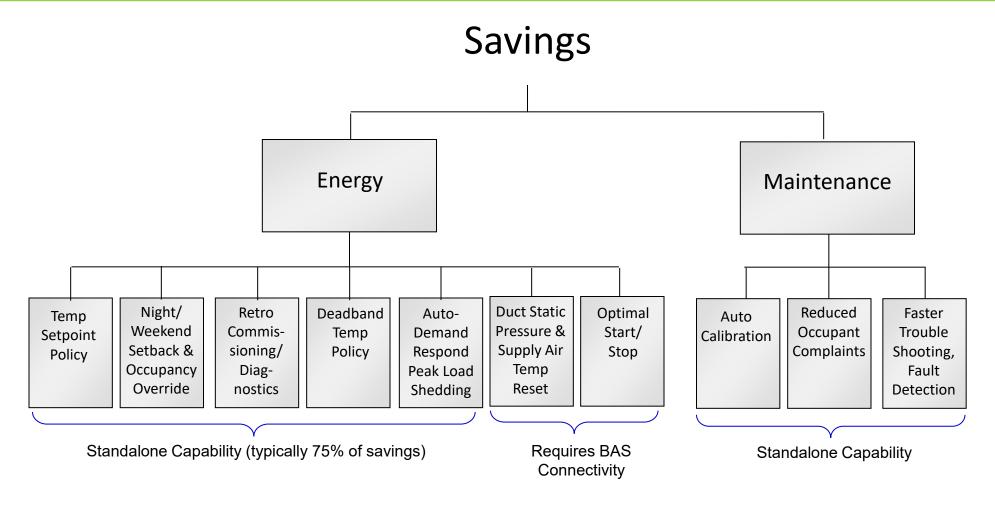
- 17,000 sq-ft Class A Office Space, 31st Floor
- 48 Story Hi-Rise, managed by Cushman & Wakefield
- San Francisco Financial District
- Tenant: Private Equity Firm

Pre-WPT Installation Mar - Nov

W.O#	DATE	TENANT	FLOOR	OFFICE#	REQUEST	TEMP.	WORK PERFORMED	BY	#
148516	9-Mar-09		31	3115	COLD		FOUND STAT PUTTING OUT 1#	JIM	1
150125	6-Apr-09		31	LARGE CONF.	PRE COOL		PUT STAT INTO COOLING FOR MTNG.	TIM	2
150195	8-Apr-09		31	CONF ROOM	COLD		CAL. T-STAT AND SET TO 70-74	PAUL	3
150500	15-Apr-09		31	3146	COLD	70	OFFICE TEMP. WAS 70	PAUL	4
151016	27-Apr-09		31	3155	COLD	71	TEMP. WAS 71	FRAZER	5
153307	15-Jun-09		31	CONF ROOM	HOT	73	AMBIENT 73 LOWERED STAT TO 65/70	PAUL	6
153976	26-Jun-09		31	EAST CORNER	COLD	73	RM TEMP 73 RAISED STAT TO 74	JIM	7
153991	26-Jun-09		31	PINE SIDE	COLD	73	AREA TEMP. 73, RAISED STAT TO 74	JIM	8
N/A	6-Jul-09		31	3156	COLD	71	OFFICE TEMP. WAS 71	PAUL	9
154347	7-Jul-09		31	S. ADMIN	COLD	72	AREA TEMP WAS 72	C.W/ PF	10
155020	22-Jul-09		31	3115	COLD	71	AREA TEMP AT 71 F, T'STAT AT 75 F	ART	11
155582	5-Aug-09		31	3134-A	COLD	73	AREA TEMP WAS 73.	CRAIG	12
155597	5-Aug-09		31	N CONF RM.	COLD		T'STAT SET TO 65-69, RESET TO 70-73	ARTURO	13
155597	5-Aug-09		31	NORTH CONF RM	COLD	68	TEMP. WAS 68 RESET TO70-73	ART	14
155808	12-Aug-09		31	3104	HOT		RE-SET STAT TO 71-74, FROM 70-74	CRAIG	15
157113	8-Sep-09		31	3127	HOT		CAL. STAT AND SET TO 71-74	CRAIG	16
157849	30-Sep-09		31	CAL. ST. SIDE	COLD		CAL. AND SET STAT TO 75	CRAIG	17
158278	6-Oct-09		31	3134A	COLD		REDUCED CFM, REDIRECTED AIR FLOW	C.W./S.T.	18
158192	7-Oct-09		31	3134A	COLD	74	TEMP.IS 74 ADJUSTED TWO STATS IN AREA	ART	19
158563	16-Oct-09		31	EAST CORNER	HOT	73	SET STAT TO 73	GRAIG	20
159030	27-Oct-09		31	3152	HOT	71	OFFICE TEMP. WAS 71	PAUL	21
159095	29-Oct-09		31	EAST CORNER	COLD	72.5	AREA TEMP WAS 72.5	ARTURO	22
159113	29-Oct-09		31	3146	HOT		DECREASED STPT TO 71-74 FROM 71-75	ARTURO	23
159222	2-Nov-09		31	3146A	HOT		CHILLER STARTED AT 10:45	ARTURO	24
159222	2-Nov-09		31	3146A	WARM	73	AREA TEMP WAS 73. MADE NO ADJ.	ARTURO	25
159240	2-Nov-09		31	WEST ADMIN	WARM	71.5	AREA TEMP. WAS 71.5 MADE NO ADJ.	PAUL	26
159321	3-Nov-09		31	3143/3140	WARM	72.5	AREA TEMP. WAS 72.5 MADE NO ADJ.	PAUL	27
159759	_13-Nov-09		31	N CONF RM.	COLD	69	INCREASED SPT TO 71-74, FROM 69-73	ARTURO	28
159854	7-Nov-09		31	N CONF RM.	COLD	69	CAL, AND SET STAT TO 71-74	CRAIG	29


Post-WPT Installation Mar – Nov

W.O#	DATE	TENANT	FLOOR	OFFICE#	REQUEST	TEMP.	WORK PERFORMED	BY	#
164055	1-Mar-10		31	3155	COLD	69	NEW W.P.T. WAS SET AT 71, SET TO 74	PAUL	1
164473	5-Mar-10		31	3113	COLD	71	FOUND COAT HANGING OVER T-STAT	PHIL	2
164916	12-Mar-10		31	3134A	COLD	72	SUPPLY AIR AT 68F STAT SET @ 72, RAISED TO 73	ART	3
165486	25-Mar-10		31	3120A & B	COLD	72	RAISED SPT. TO 73	CRAIG	4
166825	27-Apr-10		31	3120A & B	COLD	72	WPT WAS SET TO 73, RAISED TO 74	PAUL	T
166853	27-Apr-10		31	3121	HOT	77	UNABLE TO CALIBRATE WPT WIIL FOLLOW-UP	PHIL	T
166994	3-May-10		31	3121	HOT	76	FOLLOW-UP TO REPLACEMENT OF WPT BY	CRAIG	T
169919	28-Jun-10		31	3155	COLD	70	RESET STAT TO 72	CRAIG	T
174033	27-Sep-10		31	PINE SIDE	HOT	80	CALIBRATED (3X) STATS AND SET AT 70 F.	CRAIG	9
176108	17-Nov-10		31	3155	COLD	70	STAT WAS SET @ 71 RAISED TO 73	PAUL	1

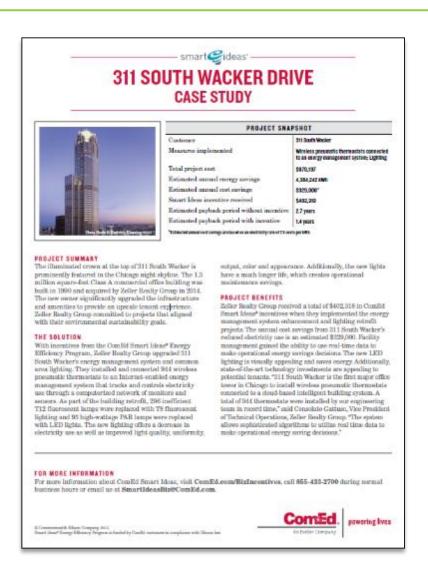


- √ 66% reduction in hot/cold calls
- ✓ 25 avoided calls/year
- ✓ 7-10¢/sq-ft/year savings

Energy Savings Control Strategies - Scenarios

Enable Energy Savings Strategies – 20-30% reduction

Same Benefits as Direct Digital Control – but at a Fraction of the Price and Disruption


ComEd Case Study - Chicago

- 65 story tower, built in 1990
- 1.4 million sq-ft
- Utility validated energy savings of 30% per year
- Payback period of 1.8 years with ComEd incentive (3.6 years without incentive).

311 S. Wacker Drive ECM's

	Applicability for 311 South Wacker Dr.	Typical Savings based DDC and WPT experience	Est. Savings for 311 Wacker Dr.	
Programmable Setbacks	Setback for about 60% of zones for heating only. (Cooling setback already in place at central plant level).	5-10%	9%	
Duct Static Pressure Reset	Fans have variable pitch blades which can be modulated based on WPT branch pressure readings	5-10%	6%	
Setpoint Enforcement, auto-calibration, continuous commissioning	Enforce setpoints to reasonable levels (i.e. between 65 and 75 degrees) to avoid simultaneous heating/cooling. Only apply to perimeter reheat zones.	5-10%	3%	
Supply Air Temp Reset	Use WPT temperature sensors to optimize supply air temp at AHU's	2-4%	3%	
Deadband Setpoints	Deadband setpoints may be applicable for some areas - verify tenant service level agreement	3-5%	3%	
Optimal Start/Stop	AHU's on set schedule - can introduce optimal start/stop for cooling only	5-10%	2%	
Potential Energy Savings via 26% Applicable ECM's				

ECM Fully Applicable

ECM Partially Applicable

ECM Not Applicable

Projected Savings: 26%

Actual Measured Savings: 30% (over 18 month period post retrofit)

Case Study:

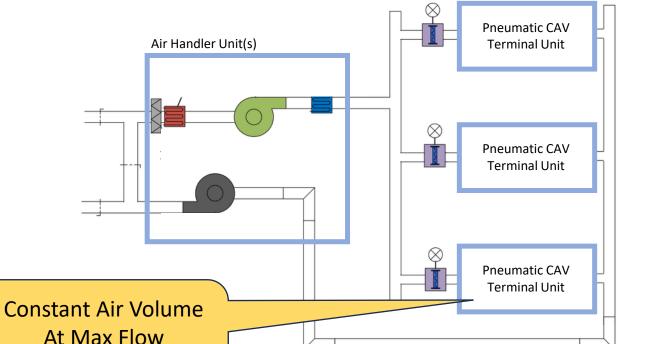
Conemaugh Memorial Medical Center

Duke LifePoint Healthcare System April 2025

Conemaugh Memorial Medical Center - Overview

Facility Type	540 bed hospital, Level 1 trauma center
Location:	Johnstown, PA
Building:	Multiple Connected Buildings Built From 1962-2021
Total Hospital Area:	855,000 Sq-ft
Project Areas:	93,200 Sq-ft (patient wings and vascular support)
New Wireless Thermostats	156 Total: Patient wing, P Building - 128 stats Vascular support, M Building - 28 stats
Terminal Unit Type:	Pneumatic Constant Air Volume w/hot water reheat
AHU's	7 AHU's with VFD Fans
Central Plant:	Electric Chiller, Gas Boiler
BAS:	JCI Metasys
Utility:	Penelac

Energy Source:	Consumption
Electricity HVAC:	25,455,000 kWh per year \$0.085 Per kWh \$2,189,000 Total per year
Gas HVAC:	185,300 MMBTU \$5.175 Per MMBTU \$ 960,000 Total per year
TOTAL HVAC Energy Use:	\$ 3,149,000 \$ 3.68 / Sq-ft

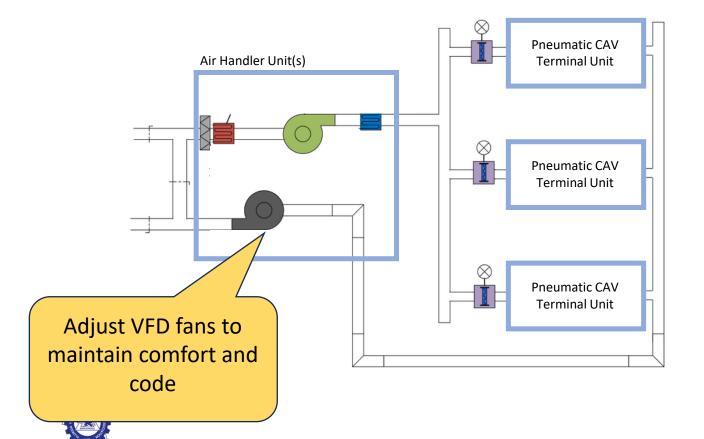

Multi-zone HVAC System - Before Upgrade

AHU's with VFD Fans

(worst case)

CAV Terminal Units with Hot Water Reheat

Pneumatic room thermostats


No visibility nor feedback from occupant zones

Multi-zone HVAC System - After Upgrade

AHU's with VFD Fans

CAV Terminal Units with Hot Water Reheat

Pneumatic room thermostats

Feedback from Zones
Temperature,
Comfort

Challenges and Opportunity

Challenge:

- Pneumatic thermostats no communications for room temp, setpoint, nor heating valve position
- Cannot optimize CFM nor SAT w/control strategies
- CFM sized per worst case heating/cooling scenarios with outside air. Minimum ASHRAE and FGI Guidelines are much less usually 25-30% of maximum heating and cooling
- But for most of the year, high CFM is unnecessary and wastes energy:
 - Must cool to supply air reset temp
 - Consume fan energy
 - Must reheat to room setpoint

Opportunity:

- Upgrade existing pneumatic thermostats to Wireless Pneumatic Thermostats (WPT)
- Feedback to BAS via BACnet: Room Temperature, Branch Pressure (heat/cool demand), and Setpoint Temperature
- Enable BAS to modulate CFM airflow using fan VFD's
- Save Energy:
 - Reduce Chiller Load
 - Reduce Fan Energy Consumption
 - Reduce Hot Water Reheat load on Boiler

Implementation of Non-Invasive WPT Upgrade

WPT Retrofit

- Replace 156 pneumatic stats
- Non-invasive installation
 - 10-15 minutes per room
 - No above ceiling work
 - 5 days to complete
 - virtually no patient/operational disruption
- Seamless integration with existing Johnson Controls Metasys BAS
- Average installed cost of \$1,100 per stat (room)

Conventional DDC Retrofit

- Costly and Disruptive
 - 4-6 hours per room
 - Above ceiling work
 - IRCA may be required
 - Months to complete
 - Relocation of staff/patients
- Average installed cost of \$3,600 per stat (room)

VS.

Resulting Energy Savings - P Building (128 Rooms)

CFM Airflow Control Sequence:

- Reduce airflow when max cooling/heating not needed
- Maintain FGI minimum four air exchanges/hour
- Average 200 CFM reduction per room

Equipment	Savings per room per year				
Fan & Cooling	Elec.	2,530 kWh	\$202		
Reheat	Gas	17.00 MMBTU	\$87		
Total			\$289		

Number of Rooms	128
Total Annual Savings for Building P	\$36,992

Project Payback Period: 2.9 yr with Utility Rebates

Project Cost and Payback (P Building)

Est. cost per installed thermostat	\$1,100
Number of thermostats	128
Utility Rebate (for Electricity)	\$32,385
TOTAL COST WITH REBATE	\$108,415

Energy Savings (Gas and Electric)	\$36,990
Payback Period without Rebate	3.8 Yrs
Payback Period with Rebate	2.9 Yrs

WPT Retrofit: 1/3 Cost of DDC, 3x Faster Payback

Comparison WPT vs. Conventional DDC Retrofit per Room

Est. cost per installed thermostat	\$1,100	\$3,200
Number of thermostats	128	128
TOTAL COST WITHOUT REBATE	\$140,800	\$409,600

Energy Savings (Gas and Electric)	\$36,990	\$36,990
Payback Period without Rebate	3.8 Yrs	11.1 Yrs

When to Consider WPT vs. DDC

WPT approach particularly effective for:

- Avoiding operational disruption, occupant relocation
- i.e. Patient Floors, Office Suites
- Infection Control Risk Assessment areas

WPT has most attractive payback for:

Rooms and spaces with low/med airflow

Conventional DDC effective for:

- Areas with higher airflows
- i.e. Operating Rooms, Cath Lab, Waiting Areas, Labs, Lobbies
- Upfront cost is higher for DDC, but high airflow locations can save more energy to help shorten payback period

LifePoint Health - WPT Installations

- Sovah Danville Regional Medical Center, Danville VA
- Lake Cumberland Regional Medical Center, Somerset KY
- Clinch Valley Medical Center, Richlands VA
- Southern Tennessee Winchester, Winchester, TN
- Starr Athens Regional Medical Center, Athens, TN
- Sumner Regional Medical Center, Gallatin, TN
- Additional Locations Planned

80 WPT's – Completed

90 WPT's - Completed

83 WPT's - In Progress

40 WPT's – In Progress

60 WPT's – In Progress

50 WPT's – In Progress

Later 2025 and 2026

Summary

- Pneumatically controlled buildings use more energy, require more maintenance, and provide lower tenant comfort
- Upgrading to conventional Direct Digital Controls (DDC) can be extremely costly and disruptive to tenants
- The Wireless Pneumatic Thermostat (WPT) provides a non-invasive upgrade solution which cost 70% less than conventional DDC
- Payback periods are typically three years or less utility rebates may deliver even shorter payback periods
- The Wireless Pneumatic Thermostat is proven technology which is tested and recommended by the US Dept of Energy and receives rebates from numerous utilities nationwide.

Additional Non-Invasive Retrofit Solutions

Wireless Steam Trap Monitor

Leaking Traps Waste Energy

Typical Steam Trap

CYPRESS ENVIROSYSTEMS WIRELESS STEAM TRAP MONITOR

- Necessary part of the steam distribution system, usually hundreds of units per site
- 15-20% average failure rate; leaks steam
- Failed traps lose \$5,000 per year (1/8" orifice)
- Manual inspection typically done annually labor intensive, do not catch problems in timely manner
- Solution: Wireless steam trap monitor detects faults and alarms on error, avoiding expensive leak loss
- Non-invasive installation: no breaking seals, wireless, integrates with BMS
- Battery life of 3+ years at typical sample rates
- IP65/NEMA 4 rated for outdoor use
- One year payback on investment

Wireless Gauge Reader

- "Electronic Eyeball" reads gauges and transmits readings wirelessly
- Non-invasive, clamp-on to existing gauges in minutes
- No downtime, no leak check, no wiring, no drawings
- Battery life of 3+ years at 15 minute sample rate
- IP56/NEMA 4 rated for outdoor use
- Various size and types of mounting adapters to fit most existing gauges
- Reads dial gauges, hour meters, LED/LCD displays

Wireless Transducer Reader

- Enables wireless remote monitoring of virtually any analog transducer or instrument with the following outputs: 4-20mA, 0-5V, or 0-10V, RS-232, RS-485, thermocouple, thermistor
- Compatible with most existing flow meters, current meters, particle counters, thermocouples, weigh scales, etc.
- Battery life of 3+ years at 15 minute sample rate
- Optional enclosures for NEMA 6, IP 67 protection
- Enables data logging to enable trend analysis, notification, or statistical process control

Thank you! Q&A

Contacts:

Harry Sim

Cypress Envirosystems

Phone: (408) 307-0922

Email: harry.sim@CypressEnvirosystems.com

Bob Cox

LP3 Solutions

Phone: (919) 649-5274

Email: bcox@lp3solutions.com

